Pain Self-Management after Spinal Cord Injury (SCI): # State-of-the-Science Thilo Kroll, Ph.D.¹; Matthew Kehn, B.A.²; Suzanne L. Groah, M.D.² ¹University of Dundee, Scotland; ²National Rehabilitation Hospital, Washington, DC # DUNDEE ## **Background:** - A significant proportion of people with SCI experience chronic pain (44%; Walter et al. 2002) - Chronic pain is recognized as a biopsychophysiological phenomenon (Wegener & Haythornthwaite, 2001) - Pain self management interventions have been successfully applied to other chronic pain conditions (Wegener & Shertzer, 2004) - Prescription medication appears to be unsatisfactory in controlling pain (Widerstroem-Noga & Turk, 2003) - Individuals with SCI prefer psychological approaches to chronic pain regulation rather than pharmacological approaches (Wegener & Haythornthwaite, 2001) - Successful pain self management may reduce medication dependency, enhance personal control and independence # **Objective:** To determine, using a systematic literature review, the evidence base for pain self-management after spinal cord injury #### What is "Self-Management"? "Self management refers to the individual's ability to manage the symptoms, treatment, physical and psychosocial consequences and lifestyle changes inherent in living with a chronic condition. Efficacious self management encompasses ability to monitor one's condition and to effect the cognitive, behavioural and emotional responses necessary to maintain a satisfactory quality of life. Thus, a dynamic and continuous process of self regulation is established" (Barlow, Wright, Sheasby, Turner & Hainsworth, 2002, p.178) ## Methods: - Databases searched: MEDLINE, EMBASE, CINAHL, PsycInfo - Search limited to indexed and peer-reviewed literature published between January 1996 -October 2007. - Inclusion Criteria: (1) pain, (2) spinal cord injury, (3) self-care/management and (4) intervention ## **Results:** #### The 6 Studies Included | Publication | Population/Sample | Design &
MRC Stage | Intervention | Outcomes &
Effectiveness | Quality | |------------------------------------|---|--|---|--|--| | Norrbrink Budh
et al 2006 (SWE) | 27 SC & neuropathic pain, 11 controls | Non-RCT
Phase I / III | Educational sessions (pain) CBT Relaxation, exercise Body awareness 20 sessions / 10 wks | - Anxiety & Depression
decreased - Sleep quality improved - Analgesics use decreased
in TG - TG & CG had fewer
healthcare visits pre-post | - Small study - Non-RCT limits effectiveness evaluation | | Hughes
et all 2006 (USA) | 78 (53 TG) community-
living women w/
disabilities (6% spinal
impairments, 27% MS) | Random, waiting
control; pre/post
design w/ 3 month
follow up
Phase II | Stress self-management program Stress education Time management Cognitive stress mangmt Social support Peer led 6 x 2.5 hrs | Perceived stress changed in TG No clear picture regarding pain Less pain at follow up | Highly educated sample 28 of 53 assigned to
intervention attended Complex intervention Pain not primary focus Small sample (attrition) Effectiveness for pain unclear | | Ehde & Jensen
2004 (USA) | 18 (13 TG), various
disabilities; 10 w/ SCI | Quasi-
experimental
Phase I | - Cognitive restructuring
- 8 x 90 min. sessions v. 8 x
90 min. group education | - Decrease in average pain intensity in CG, not education | Small sampleSubstantial attritionNot SCI-specificLack of powerIntervention modified | | Hough & Kleinginna
2000 (USA) | 6 (5 male) SCI patients receiving inpatient psychological services | Case studies;
Phase I | - Individualized relaxation treatment | - Reduced pain
- Reduced anxiety | - Pre-experimental- Specifics of intervention unclear | | Craig
et al 1997 (AUS) | 28 SCI patients (TG); 41
CG; all SCI | Non-RCT;
Phase II / III | Group cognitive behavioral therapy10 wks, 1.5-2 hr sessions | No significant changes in
anxiety and depression
between TG & CG Subgroup analysis showed
greater benefits for highly
depressed individuals in
intervention | Pain was not an outcome measure Uneven group sizes No substantial levels of depression pre-treatment no follow-ups | | Ginis
et al 2003 (CAN) | 34 w/ SCI (11 female): 21
TG, 13 CG | RCT; Phase III | - Supervised exercise at
Health Centre (stretching,
resistance) | Exercisers had less stress
and pain than controls Satisfaction w/ physical
function, appearance and
depression improved in
intervention | - Unclear whether formally supervised exercise can count as self-management | ## Study characteristics and quality - Heterogeneous and small sample sizes - Diversity of study designs; RCTs rare - Phase I and Phase II studies dominate - Mostly preliminary findings reported - Substantial study limitations reported by study authors (attrition) ## Types of self-management interventions - Complex, multi-component programs - Education - Cognitive reappraisal - Exercise - Social support - Cognitive-Behavioral Therapy (CBT) - Hypnosis - Exercise-focused interventions using goal setting ## Effectiveness of pain self-management interventions in SCI - Cognitive-behavioural therapy (CBT) may hold promise; no controlled effectiveness studies in SCI - Hypnosis no controlled effectiveness studies in SCI - Exercise-based interventions controlled studies; self-management element limited - Comprehensive pain and stress self-management programs almost non existent; substandard evaluation; outcomes unclear - Some indication that affective correlates of pain such as anxiety and depression can be reduced through CBT and Exercise programs - Direct effect of pain intensity mostly unclear due to lack of quality evaluations. #### **Potential** - Rehabilitation focus on self-management in other areas (bowel, bladder management, skin care) may facilitate active patient orientation - Evidence-base for some self-management elements (relaxation, exercise, CBT) "established" for other chronic pain conditions - Positive impact on affective correlates of chronic pain (e.g. anxiety, depression) may produce better functional outcomes and enhance independent living ## **Conclusion:** - Evidence base for complex or uni-modal self-management for chronic pain in SCI is limited due to (a) few formalized/published programs; (b) lack of standard quality evaluations - Potential to develop and adapt interventions that have been developed for other chronic pain populations - Patient direction still limited in formalized self-management approaches (eg. Exercise) *This project is funded by NIDRR grant #H133B031114